Доля электроэнергетики отраслевой структуре экономики. Анализ структуры современной электроэнергетики. Реформирование Холдинга ОАО РАО «ЕЭС России»

Доля электроэнергетики отраслевой структуре экономики. Анализ структуры современной электроэнергетики. Реформирование Холдинга ОАО РАО «ЕЭС России»

1.2 Структура электроэнергетики России

В результате реализации основных мероприятий, связанных с реформированием отрасли, структура электроэнергетики стала достаточно сложной. Отрасль состоит из нескольких групп компаний и организаций, каждая из которых выполняет определённую отведённую ей отдельную функцию.

Основные группы компаний и организаций:

1. Генерирующие компании оптового рынка

2. Электросетевые компании

3. Энергосбытовые компании

4. Компании, осуществляющие управление режимами единой энергосистемы России

5. Компании, отвечающие за развитие и функционирование коммерческой инфраструктуры рынка (ОРЭМ и розничных рынков)

6. Организации, осуществляющие контроль и регулирование в отрасли

7. Потребители электрической энергии, мелкие производители электрической энергии

Ключевые характеристики групп компаний и их состав:

1 группа. Генерирующие компании. Генерирующие компании - крупные компании, активами которых являются электростанции разных типов. Всего было учреждено 20 новых тепловых генерирующих компаний, а также 1 генерирующая компания, производящая электрическую энергию и мощность на большинстве гидроэлектростанций России. Кроме того, существует 1 компания, управляющая всеми атомными электростанциями в стране. Так, атомными электростанциями управляет Росэнергоатом, почти всеми гидроэлектростанциями владеет РусГидро. Среди тепловых электростанций - 6 оптовых генерирующих компаний (ОГК), управляющих крупными тепловыми станциями - ГРЭС, суммарная установленная мощность каждой из таких компаний более 8 ГВт. Электростанции каждой ОГК находятся в различных регионах России. Также создано 14 территориальных генерирующих компаний, которым принадлежат среднего размера ТЭС и ТЭЦ. Электростанции и теплоэлектроцентрали, принадлежащие одной ТГК, расположены на одной территории (1 регион или ряд соседних регионов страны).

Кроме указанных генерирующих компаний, существует ещё несколько достаточно крупных генкомпаний, которые не контролировались РАО ЕЭС на момент начала реформы, а поэтому не сменили собственника. Речь о четырёх так называемых «назависимых» АО-энерго: Татэнерго, Башкирэнерго, Новосибирскэнерго, Иркутскэнерго. Эти компании лишь формально (путём учреждения своих дочерних компаний) выполнили требование закона о разделении конкурентных и монопольных видов деятельности. Например, Татэнерго учредила «генерирующую компанию», «сетевую компанию» и Татэнергосбыт - как дочерние компании, управляющие соответственно генерирующими активами, сетевыми активами и энергосбытовой деятельностью на территории республики Татарстан. Аналогично поступили и другие компании из этой четвёрки.

Многие из остальных генерирующих активов контролируются государством, поскольку находятся на так называемых территориях неценовых зон (ввиду серьёзного дисбаланса объёма генерирующих мощностей и спроса на электрическую энергию, либо ввиду замкнутости и небольшого размера территориальных энергосистем). К «нерыночным» территориям относятся удалённые от центральных регионов страны, обладающих развитой электроэнергетической инфраструктурой, территории: территория Дальнего востока, Камчатки, Чукотки, о. Сахалин, большая часть территории Якутии, Калининградская область, а также территории республики Коми и Архангельской области. Правда, генерирующие мощности двух последних регионов находятся всё же в частных руках - принадлежат ТГК-2, ТГК-9, ОГК-3.

2 группа. Электросетевые компании. Электросетевые компании представлены во-первых, компанией-гигантом: Федеральной сетевой компанией (ФСК), которой принадлежат так называемые магистральные сети - то есть линии электропередач (ЛЭП) высокого напряжения (преимущественно 220 кВ, 330 кВ, 500 кВ). Условно говоря, это транспортные артерии, связывающие различные энергосистемы в масштабах огромной территории страны, то есть обеспечивающие возможность перетока значительных объёмов электроэнергии и мощности на дальние расстояния, между удалёнными крупными эенргосистемами. ФСК, таким образом, имеет стратегическое значение не только для электроэнергетической отрасли, но и для экономики всей страны. Поэтому она контролируется государством, которому принадлежит почти 80% акций компании .

Во-вторых, электросетевые компании представлены крупными межрегиональными распределительными сетевыми компаниями (МРСК), объединёнными в единый холдинг - Холдинг МРСК. Время от времени появляются предположения о будущем объединении региональных МРСК, но пока Холдинг имеет сложную корпоративную структуру: региональные МРСК и собственно головная холдинговая компания, которой принадлежат крупные пакеты акций региональных «дочек». Такая сложная структура - не лучшая форма организации с точки зрения управления, региональные МРСК обладают определённой долей самостоятельности, усложняются и многие процедуры в связи с «многокорпоративностью» по своей сути единой организации. Дочерними компаниями Холдинга МРСК являются:

· МРСК Центра и Приволжья

· МРСК Юга

· МРСК Северного кавказа

· МРСК Волги

· МРСК Урала

· МРСК Сибири

· Тюменьэнерго

· Московская электросетевая компания

· Ленэнерго

· Янтарьэнерго

Последняя группа сетевых компаний - это малые территориальные сетевые организации (ТСО). Эти организации обслуживают, как правило, электросети небольших муниципальных образований, могут принадлежать как муниципальным властям, так и частным региональным инвесторам. Число таких организаций велико, однако доля их услуг в стоимостном выражении в сравнении со стоимостью услуг Холдинга МРСК и ФСК не столь значительна. Здесь же стоит упомянуть и о существовании бесхозных сетей - то есть таких электросетей, право собственности на которые не закреплено ни за каким владельцем. Такое стало возможно в результате множественных экономических преобразований, потрясших экономику страны в течение последних десятилетий.

Ввиду слабой управляемости и низкого уровня контроля за деятельностью малых ТСО со стороны муниципальных и региональных властей, других государственных органов, а также ввиду слабой мотивации текущих собственников развивать и поддерживать в требуемом состоянии электросети своих ТСО, всё чаще появляются предложения о поглощении малых сетевых компаний компаниями структуры МРСК. Это, с одной стороны, безусловно идёт в разрез с идеями реформы отрасли (рост числа участников и развитие конкуренции), но с другой стороны, в условиях российской действительности (неэффективность малых собственников, настроенных на краткосрочное пользование доставшимся активом с максимальной краткосрочной отдачей в ущерб инвестиционному развитию) может оказаться и эффективным.

3 группа. Энергосбытовые компании. Главными представителями этой группы компаний отрасли являются эенргосбыты - наследники империи РАО ЕЭС. Это «осколки» вертикально-интегрированных АО-энерго, получившие особый статус - статус гарантирующего поставщика. Ввиду такой специфики энергосбытовой сегмент, пожалуй, на сегодня является самым нереформированным сегментом из всех.

Кроме гарантирующих поставщиков существуют и независимые энергосбытовые компании. Это, в первую очередь, компании, осуществляющие поставку электрической энергии и мощности крупным потребителям непосредственно с оптового рынка электрической энергии и мощности (ОРЭМ). Кроме таких компаний, существуют и те, которые осуществляют деятельность по купле-продаже электрической энергии на розничных рынках. Но таких компаний значительно меньше ввиду особенностей правил рынка.

4 группа. Компании, осуществляющие управление режимами единой энергосистемы России Это, в первую очередь, Системный оператор Единой энергетической системы России (СО ЕЭС), а также его территориальные подразделения. Системный оператор несёт важную «интеллектуальную» нагрузку с технологической точки зрения. Он управляет электроэнергетическими режимами в энергосистеме. Его команды обязательны к исполнению для субъектов оперативно-диспетчерского управления (в первую очередь, для генерирующих и электросетевых компаний).

В пределах технологически изолированных территориальных энергосистем управление режимами осуществляет отдельная компания, на которую возложены функции по оперативно-диспетчерскому управлению в местной энергосистеме. Это может быть сетевая организация. (Такая ситуация может быть в изолированных энергорайонах, например, на северных территориях, в Якутии.)

Группа 5. Компании, отвечающие за развитие и функционирование коммерческой инфраструктуры рынка (ОРЭМ и розничных рынков). На сегодняшний день это, во-первых, некоммерческое партнёрство «Совет рынка» (НП Совет рынка), а, во-вторых, его дочерние компании: ОАО «АТС» - он же коммерческий оператор и ЗАО «ЦФР» - центр финансовых расчётов, осуществляющий расчёт и зачёт встречных финансовых обязательств и требований. НП Совет рынка, как ясно из его названия, имеет форму некоммерческого партнёрства, членами которого являются все участники оптового рынка электрической энергии и мощности (ОРЭМ). Он разрабатывает и дорабатывает договор о присоединении к торговой системе оптового рынка, обязательный к заключению всеми участниками ОРЭМ. Этот договор с учётом приложений - регламентов ОРЭМ определяет правила, порядок функционирования ОРЭМ, детально описывая различные процессы, порядок расчётов и т.п. Договор о присоединении должен соответствовать Правилам оптового рынка, утверждённым Постановлением Правительства РФ, а также иным нормативно-правовым актам. При внесении изменений в Правила ОРЭМ вносятся и изменения в договор о присоединении. Важные решения принимает и утверждает наблюдательный совет Совета рынка. Совет рынка также осуществляет разработку правил функционирования розничных рынков (в пределах своих полномочий), отвечает за развитие отрасли на основе баланса интересов субъектов электроэнергетики.

ОАО «АТС» является коммерческим оператором оптового рынка. Он организует работу рынка и взаимодействие участников рынка.

ЗА «ЦФР» проводит финансовые расчёты на рынке.

Группа 6. Организации, осуществляющие контроль и регулирование в отрасли. Контроль и регулирование в отрасли в пределах своих полномочий осуществляют различные органы исполнительной власти: как Российской федерации, так и её субъектов. Непосредственное влияние на процессы в отрасли оказывает Минэнерго. Весомую роль играют Федеральная служба по тарифам (ФСТ), Минэкономразвития, непосредственно Правительство РФ, а также Ростехнадзор, государственная корпорация Росатом и др. Со стороны субъектов федерации на розничном рынке в регулировании отрасли участвуют органы исполнительной власти в области регулирования тарифов (региональные энергетические комиссии, комитеты по тарифам и т.п.).

Группа 7. Потребители электрической энергии, мелкие производители электрической энергии. Это множество различного масштаба предприятий, организаций - субъектов экономики РФ, а также граждан страны, осуществляющих потребление электрической энергии для собственных нужд.

С точки зрения современной структуры отрасли всех потребителей можно разделить на потребителей розничных рынков (самая многочисленная группа) и потребителей оптового рынка. Потребителями оптового рынка могут стать лишь крупные предприятия, к тому же осуществившие ряд необходимых мероприятий: установку АИИС КУЭ (автоматизированной информационно-измерительной системы коммерческого учёта электрической энергии), совершивших ряд организационных мероприятий для получения статуса субъекта ОРЭМ и получения допуска к торговой системе ОРЭМ. Поскольку все эти мероприятия требуют финансовых вложений, то их эффективность для каждого конкретного потребителя следует проверять отдельно .

Электроэнергетика занимается производством и передачей электроэнергетики и является важнейшей базовой отраслью промышленности России. От уровня ее развития зависит все народное хозяйство страны...

Значение электроэнергетики в хозяйственном комплексе России

Значение электроэнергетики в хозяйственном комплексе России

Значение электроэнергетики в хозяйственном комплексе России

Российская энергетика переживает непростой период. Серьезная авария в Московской энергосистеме в 2005 г., ограничение энергоснабжения в исключительно холодную зиму 2005-2006 гг....

Значение электроэнергетики в хозяйственном комплексе России

Для более экономичного, рационального и комплексного использования общего потенциала электростанций нашей страны создана Единая энергетическая система (ЕЭС)...

Особенности развития и размещения отраслей топливно-энергетического комплекса России

Топливно-энергетический комплекс Российской Федера-ции представляет собой сложную систему? совокупность произ-водств, процессов, материальных устройств по добыче топливно-энергетических ресурсов (ТЭР), их преобразованию, транспорти-ровке...

В качестве основных направлений развития электроэнергетики автономного округа предполагается строительство и ввод новых энергетических мощностей и электросетевых объектов...

Проблемы и перспективы развития Ханты-Мансийского автономного округа - Югра

В целом тематика географии промышленности была в основном вне поля его научных интересов. Но его эрудиция и научный темперамент служили примером и вдохновляющим началом для многих его учеников, в том числе и для автора данного текста доклада. 1...

Почти на 90% общероссийской добычи газа сосредоточено в Западной Сибири (Западносибирская НГП) (табл. 1), в первую очередь в ЯНАО - свыше 80%. Наиболее крупные газодобывающие регионы Европейской части страны...

Развитие газовой промышленности России

В организационном плане добычи газа в России ведется четырьмя основными группами производителей (рис. 4): - компаниями, входящими в Группу «Газпром» - крупнейшего в мире газового концерна, владельца ЕСГ и монопольного экспортера газа...

Современная демографическая ситуация в России

1) Структура населения по полу. Соотношение полов в населении - важный фактор брачности (т.е. процесса заключения браков) и формирования семейной структуры населения...

Специфика основных форм регионального народнохозяйственного комплекса страны

В ходе общественного развития происходит дифференциация членов общества в зависимости от их участия в разделенном труде. Суть всякого разделения труда состоит в специализации производителя на выпуске какой-либо продукции в объемах...

Электроэнергетика объединяет все процессы производства, передачи, трансформации и потребления электроэнергии. Она решающим образом влияет на уровень развития НТП в стране, а также на территориальную организацию народного хозяйства.

Россия занимает второе место в мире по производству электроэнергии (786,9 млрд. кВт/ч в 1997 г.), однако показатель выработки электроэнергии на душу населения пока еще ниже, чем в развитых странах. Электроэнергетика наряду с газовой промышленностью принадлежит к отраслям ТЭК, сохранившим стабильность развития.

На размещение предприятий электроэнергетики, в основном, влияют два фактора: наличие топливно-энергетической базы и потребителей энергии. Раньше 9/10 всей электроэнергии в стране производилось в европейской части России, в настоящее время наметился сдвиг в размещении отрасли на восток.

В структуре производства электроэнергии более 70% приходится на ТЭС, 20% - на ГЭС, около 10% - на АЭС.

Основными в составе электроэнергетики являются тепловые станции (ТЭС). Они дают свыше 2/3 электроэнергии. Это связано с тем, что Россия обладает большими и разнообразными запасами топливных ресурсов, ТЭС можно размещать непосредственно вблизи потребителя.

Тепловые станции России работают на угле, мазуте, природном газе, сланцах, торфе, используют внутреннюю энергию Земли.

Теплоэлектростанции на традиционных видах топлива (угле, газе, мазуте, торфе) могут быть двух видов: конденсационные (когда прошедший через турбину отработанный пар охлаждается, конденсируется и вновь поступает в котел) и теплоэлектроцентрали (ТЭЦ). В последних отработанный пар затем используется для отопления. ТЭЦ строят обычно в крупных городах, поскольку передача пара или горячей воды пока возможна на расстоянии не более 20 км.

Конденсационные электростанции, обслуживающие большие территории, называют государственными районными электростанциями (ГРЭС). Именно на них вырабатывается большая часть электроэнергии.

В электроэнергетике сложилась тенденция строительства мощных ТЭС. Самые крупные из них (мощностью свыше 2 млн. кВт) - Костромская и Конаковская (в Центральном районе), Рефтинская и Троицкая (на Урале), Киришская (в Северо-Западном районе), Заинская (в Поволжье), Сургутская и Нижневартовская, Березовская, Назаровская, Не-рюнгринская (в Сибири и на Дальнем Востоке).

Россия обладает огромным гидропотенциалом, особенно в восточной части страны. Самые мощные гидроэлектростанции (ГЭС) построены на реках с большим падением и расходом воды. Это Саяно-Шушенская и Красноярская ГЭС на Енисее (обе мощностью по 6 млн. кВт), Братская и Усть-Илимс-кая на Ангаре (более чем по 4 млн. кВ). Но создание крупных ГЭС неблагоприятно влияет на окружающую среду. Особенно это касается ГЭС на равнинных реках, где водохранилища затапливают огромные территории, нарушают режим реки. Замедление течения реки приводит к резкому снижению ее способности к самоочистке, заиливанию русла, нарушению всей экосистемы в целом. Поэтому в перспективе планируется создание средних и малых ГЭС.

Значительный экономический эффект дают также гидроаккумулирующие станции (ГАЭС), покрывающие «пиковые нагрузки» на энергетические системы. Очень перспективным направлением развития гидроэнергетики является также создание приливных электростанций (ПЭС), использующих энергию морских вод. В России сейчас действует опытная Кислогубская ПЭС, планируется создание еще нескольких ПЭС.

Атомные электростанции (АЭС) - важная часть электроэнергетики всех развитых стран мира. Первая на планете АЭС была сооружена в г. Обнинске в 1954 г. С тех пор в России и бывших союзных республиках построено достаточно много АЭС, большинство - в европейской части России, на Украине и в Литве. Сейчас в стране действуют девять крупных АЭС - Курская (4 млн. кВт), Смоленская, Тверская, Нововоронежская, Ленинградская, Балашовская, Белоярская, Кольская.

После аварии на Чернобыльской АЭС в 1986 году строительство многих электростанций и ввод новых энергоблоков были приостановлены, темпы развития атомной энергетики замедлялись.

В настоящее время функционирует Единая энергетическая система (ЕЭС) России, объединяющая многочисленные электростанции европейской части и Сибири. Передача электроэнергии на большие расстояния осуществляется с помощью высоковольтных линий электропередачи (ЛЭП).

Современное состояние ТЭК в России, как и в других странах, требует решить ряд проблем. Во-первых, это колоссальное увеличение добычи невозобновляемых источников энергии за последние десятилетия и все возрастающее загрязнение окружающей среды. На долю ТЭК в нашей стране приходится около 48% выбросов вредных веществ в атмосферу, 36% сточных вод и свыше 30% твердых отходов от всех загрязнителей. Все это требует не только внедрения новых технологий производства электроэнергии, но и использования возобновляемых источников энергии (ВИЗ). В мире сейчас 1/7 электроэнергии получают за счет ВИЗ: солнечного излучения, ветра, тепла Земли, энергии приливов. Вопрос о расширении использования ВИЗ для России особенно актуален, так как у нас энергоснабжение более 70% территории базируется в основном на привозном органическом топливе; транспортировка его очень дорога (до 1/5 стоимости топлива), а в условиях экономического кризиса регулярность снабжения нарушается. Поэтому перестройка энергобаланса должна идти и в направлении увеличения доли ВИЗ до 20% в среднем по России (в некоторых регионах - до 50% и более).

Во-вторых, перспективы развития ТЭК связаны также с проведением энергосберегающей политики, так как почти 2/3 производимой энергии не доходит до потребителя, преобразуясь в тепловую энергию.

До реформы 2008 года большая часть энергетического комплекса Российской Федерации находилась под управлением РАО «ЕЭС России». Эта компания была создана в 1992 году и к началу «двухтысячных» годов стала практически монополистом российского рынка генерации и энерготранспортировки.

Реформирование отрасли было связано с тем, что РАО «ЕЭС России» неоднократно подвергались критике за неправильное распределение инвестиций, в результате чего значительно выросла аварийность на объектах электроэнергетики. Одной из причин расформирования послужила авария в энергосистеме 25 мая 2005 года в Москве, в результате которой была парализована деятельность многих предприятий, коммерческих и государственных организаций, остановлена работа метрополитена. А кроме этого, РАО «ЕЭС России» часто обвиняли в том, что организация продает электроэнергию по заведомо завышенным тарифам с целью увеличения собственной прибыли.

В результате расформирования РАО «ЕЭС России» была ликвидирована и созданы естественные государственные монополии в сетевой, распределительной и диспетчерской деятельности. Частный был задействован в сфере генерации и сбыта электроэнергии.

На сегодняшний день структура энергетического комплекса выглядит следующим образом:

  • ОАО «Системный оператор Единой энергетической системы» (СО ЕЭС) – осуществляет централизованное оперативно-диспетчерское управление Единой энергетической системой РФ.
  • Некоммерческое партнерство «Совет рынка по организации эффективной системы оптовой и розничной торговли электрической энергией и мощностью» - объединяет продавцов и покупателей оптового рынка электроэнергии.
  • Компании генерирующие электроэнергию. В том числе государственные - «РусГидро», «Росэнергоатом», управляемые совместно государством и частным капиталом ОГК (оптовые генерирующие компании) и ТГК (территориальные генерирующие компании), а также представляющие полностью частный капитал.
  • ОАО «Российские сети» - управление распределительным сетевым комплексом.
  • Энергосбытовые компании. В том числе ОАО «Интер РАО ЕЭС» - компания владельцами которой являются государственные структуры и организации. «Интер РАО ЕЭС» является монополистом по импорту и экспорту электроэнергии в РФ.

Кроме разделения организаций по видам деятельности, существует разделение Единой энергосистемы России на технологические системы действующие по территориальному признаку. Объединенные энергосистемы (ОЭС) не имеют одного собственника, а объединяют энергетические компании отдельно взятого региона и имеют единое диспетчерское управление, которое осуществляется филиалами «СО ЕЭС». На сегодняшний день в России действуют 7 ОЭС:

  • ОЭС Центра (Белгородская, Брянская, Владимирская, Вологодская, Воронежская, Ивановская, Тверская, Калужская, Костромская, Курская, Липецкая, Московская, Орловская, Рязанская, Смоленская, Тамбовская, Тульская, Ярославская энергосистемы);
  • ОЭС Северо-Запада (Архангельская, Карельская, Кольская, Коми, Ленинградская, Новгородская, Псковская и Калининградская энергосистемы);
  • ОЭС Юга (Астраханская, Волгоградская, Дагестанская, Ингушская, Калмыцкая, Карачаево-Черкесская, Кабардино-Балкарская, Кубанская, Ростовская, Северо-Осетинская, Ставропольская, Чеченская энергосистемы);
  • ОЭС Средней Волги (Нижегородская, Марийская, Мордовская, Пензенская, Самарская, Саратовская, Татарская, Ульяновская, Чувашская энергосистемы);
  • ОЭС Урала (Башкирская, Кировская, Курганская, Оренбургская, Пермская, Свердловская, Тюменская, Удмуртская, Челябинская энергосистемы);
  • ОЭС Сибири (Алтайская, Бурятская, Иркутская, Красноярская, Кузбасская, Новосибирская, Омская, Томская, Хакасская, Забайкальская энергосистемы);
  • ОЭС Востока (Амурская, Приморская, Хабаровская и Южно-Якутская энергосистемы).

Основные показатели деятельности

Ключевыми показателями деятельности энергосистемы являются: установленная мощность электростанций, выработка электроэнергии и потребление электроэнергии.

Установленная мощность электростанции – это сумма паспортных мощностей всех генераторов электростанции, которая может меняться в процессе реконструкции действующих генераторов или установки нового оборудования. На начало 2015 года установленная мощность Единой энергосистемы (ЕЭС) России составляла 232.45 тыс. МВт.

На 1 января 2015 года установленная мощность российских электростанций увеличилась на 5 981 МВт по сравнению с 1 января 2014 года. Рост составил 2.6%, а достигнуто это было за счет введения новых мощностей производительностью 7 296 МВт и увеличения мощности действующего оборудования, путем перемаркировки на 411 МВт. При этом были выведены из эксплуатации генераторы мощностью 1 726 МВт. В целом по отрасли по сравнению с 2010 годом рост производственных мощностей составил 8.9%.

Распределение мощностей по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра – 52.89 тыс. МВт;
  • ОЭС Северо-Запада – 23.28 тыс. МВт;
  • ОЭС Юга – 20.17 тыс. МВт;
  • ОЭС Средней Волги – 26.94 тыс. МВт;
  • ОЭС Урала – 49.16 тыс. МВт;
  • ОЭС Сибири – 50.95 тыс. МВт;
  • ОЭС Востока – 9.06 тыс. МВт.

Больше всего в 2014 году увеличилась установленная мощность ОЭС Урала – на 2 347 МВт, а также ОЭС Сибири – на 1 547 МВт и ОЭС Центра на 1 465 МВт.

По итогам 2014 года в Российской Федерации было произведено 1 025 млрд. КВтч электроэнергии. По этому показателю Россия занимает 4 место в мире, уступая Китаю в 5 раз, а Соединенным Штатам Америки в 4 раза.

По сравнению с 2013 годом, выработка электроэнергии в Российской Федерации увеличилась на 0.1%. А в отношении к 2009 году рост составил 6.6%, что в количественном выражении составляет 67 млрд. КВтч.

Больше всего электроэнергии в 2014 году в России было произведено тепловыми электростанциями – 677.3 млрд. КВтч, ГЭС произвели – 167.1 млрд. КВтч, а атомные электростанции – 180.6 млрд. КВтч. Производство электроэнергии по объединенным энергосистемам:

  • ОЭС Центра –239.24 млрд. КВтч;
  • ОЭС Северо-Запада –102.47 млрд. КВтч;
  • ОЭС Юга –84.77 млрд. КВтч;
  • ОЭС Средней Волги – 105.04 млрд. КВтч;
  • ОЭС Урала – 259.76 млрд. КВтч;
  • ОЭС Сибири – 198.34 млрд. КВтч;
  • ОЭС Востока – 35.36 млрд. КВтч.

По сравнению с 2013 годом наибольший прирост в выработке электроэнергии был зафиксирован в ОЭС Юга – (+2.3%), а наименьший в ОЭС Средней Волги – (- 7.4%).

Потребление электроэнергии в России в 2014 году составило 1 014 млрд. КВтч. Таким образом, сальдовый остаток составил (+ 11 млрд. КВтч). А наибольшим потребителем электроэнергии по итогам 2014 года в мире является Китай – 4 600 млрд. КВтч, второе место занимают США – 3 820 млрд. КВтч.

По сравнению с 2013 годом потребление электроэнергии в России выросло на 4 млрд. КВтч. Но в целом, динамика потребления за последние 4 года остается примерно на одном и том же уровне. Разница между потреблением электроэнергии за 2010 и 2014 год составляет 2.5%, в пользу последнего.

По итогам 2014 года, потребление электроэнергии по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра –232.97 млрд. КВтч;
  • ОЭС Северо-Запада –90.77 млрд. КВтч;
  • ОЭС Юга –86.94 млрд. КВтч;
  • ОЭС Средней Волги – 106.68 млрд. КВтч;
  • ОЭС Урала –260.77 млрд. КВтч;
  • ОЭС Сибири – 204.06 млрд. КВтч;
  • ОЭС Востока – 31.8 млрд. КВтч.

В 2014 году 3 ОЭС имели положительную разницу между произведенной и выработанной электроэнергией. Наилучший показатель у ОЭС Северо-Запада – 11.7 млрд. КВтч, что составляет 11.4% от произведенной электроэнергии, а наихудший у ОЭС Сибири (- 2.9%). Сальдовый остаток электроэнергии по ОЭС РФ выглядит так:

  • ОЭС Центра – 6.27 млрд. КВтч;
  • ОЭС Северо-Запада – 11.7 млрд. КВтч;
  • ОЭС Юга – (- 2.17) млрд. КВтч;
  • ОЭС Средней Волги – (- 1.64) млрд. КВтч;
  • ОЭС Урала – (- 1.01) млрд. КВтч;
  • ОЭС Сибири – (- 5.72) млрд. КВтч;
  • ОЭС Востока – 3.56 млрд. КВтч.

Стоимость 1 КВтч электроэнергии, по итогам 2014 года в России, в 3 раза ниже европейских цен. Среднегодовой европейский показатель составляет 8.4 российских рубля, в то время, как в Российской Федерации средняя стоимость 1 КВтч – 2.7 руб. Лидером по стоимости электроэнергии является Дания – 17.2 рубля за 1 КВтч, второе место занимает Германия – 16.9 рублей. Такие дорогие тарифы связаны в первую очередь с тем, что правительство этих стран отказались от использования атомных электростанций в пользу альтернативных источников энергии.

Если сопоставить стоимость 1 КВтч и среднюю зарплату, то среди европейских стран больше всего в месяц киловатт/час могут купить жители Норвегии – 23 969, второе место занимает Люксембург – 17 945 КВтч, третье Нидерланды – 15 154 КВтч. Среднестатистический россиянин может купить в месяц 9 674 КВтч.

Все российские энергосистемы, а также энергетические системы стран ближнего зарубежья соединены между собой линиями электропередач. Для передачи энергии на дальние расстояния используются высоковольтные линии электропередач мощностью 220 кВ и выше. Они и составляют основу российской энергосистемы и эксплуатируются межсистемными электросетями. Общая протяженность ЛЭП этого класса составляет 153.4 тыс. км., а в целом в Российской Федерации эксплуатируется 2 647.8 тыс. км линий электропередач различной мощности.

Атомная энергетика

Атомная энергетика представляет собой энергетическую отрасль, которая занимается генерацией электроэнергии за счет преобразования ядерной энергии. Атомные электростанции имеют два существенных преимущества перед своими конкурентами – экологичность и экономичность. При соблюдении всех норм эксплуатации АЭС практически не загрязняет окружающую среду, а ядерное топливо сжигается в несоизмеримо меньшем количестве, чем другие виды и топлива и это позволяет экономить на логистике и доставке.

Но, несмотря на эти преимущества, многие страны не хотят развивать атомную энергетику. Связано это в первую очередь с боязнью экологической катастрофы, которая может произойти в результате аварии на АЭС. После аварии на Чернобыльской АЭС в 1986 году к объектам атомной энергетики по всему миру приковано пристальное внимание мировой общественности. Поэтому эксплуатируются АЭС, в основном в развитых в техническом и экономическом отношении государствах.

По данным за 2014 год, атомная энергетика обеспечивает около 3% потребления мировой электроэнергии. На сегодняшний день электростанции с ядерными реакторами функционируют в 31 стране мира. А всего в мире насчитывается 192 атомные электростанции с 438 энергоблоками. Общая мощность всех АЭС мира составляет около 380 тыс. МВт. Наибольшее количество атомных электростанций находится в США – 62, второе место занимает Франция – 19, третье Япония – 17. В Российской Федерации функционирует 10 АЭС и это 5 показатель в мире.

АЭС Соединенных Штатов Америки в общей сложности вырабатывают 798.6 млрд. КВтч, это наилучший показатель в мире, но в структуре вырабатываемой электроэнергии всеми электростанциями США, атомная энергетика составляет около 20%. Наибольшая доля в выработке электроэнергии атомными электростанциями во Франции, АЭС этой страны вырабатывают 77% всей электроэнергии. Выработка французских атомных электростанций составляет 481 млрд. КВтч в год.

По итогам 2014 года, российскими АЭС было сгенерировано 180.26 млрд. КВтч электроэнергии, это на 8.2 млрд. КВтч больше чем в 2013 году, в процентом отношении разница составляет 4.8%. Производство электроэнергии атомными электростанциями России составляет более 17.5% от общего количества всей произведенной в РФ электроэнергии.

Что касается выработки электроэнергии атомными электростанциями по объединенным энергосистемам, то наибольшее количество было сгенерировано АЭС Центра – 94.47 млрд. КВтч – это чуть более половины всей выработки страны. А доля атомной энергетики в этой объединенной энергосистеме самая большая – около 40%.

  • ОЭС Центра – 94. 47 млрд. КВтч (39.8% от всей сгенерированной электроэнергии);
  • ОЭС Северо-Запада –35.73 млрд. КВтч (35% от всей энергии);
  • ОЭС Юга –18.87 млрд. КВтч (22.26% от всей энергии);
  • ОЭС Средней Волги –29.8 млрд. КВтч (28.3% от всей энергии);
  • ОЭС Урала – 4.5 млрд. КВтч (1.7% от всей энергии).

Такое неравномерное распределение выработки связано с месторасположением российских АЭС. Большая часть мощностей атомных электростанций сконцентрирована в европейской части страны, тогда как в Сибири и Дальнем Востоке они отсутствуют вовсе.

Самая крупная АЭС в мире – японская Касивадзаки-Карива, ее мощность составляет 7 965 МВт, а крупнейшая европейская АЭС – Запорожская, мощность которой около 6 000 МВт. Находится она в украинском городе Энергодар. В Российской Федерации самые крупные АЭС имеют мощности по 4 000 МВт, остальные от 48 до 3 000 МВт. Список российских атомных электростанций:

  • Балаковская АЭС – мощность 4 000 МВт. Находится в Саратовской области, неоднократно признавалась лучшей АЭС России. Располагает 4 энергоблоками, была введена в эксплуатацию в 1985 году.
  • Ленинградская АЭС – мощность 4 000 МВт. Крупнейшая АЭС Северо-Западного ОЭС. Располагает 4 энергоблоками, была введена в эксплуатацию в 1973 году.
  • Курская АЭС – мощность 4 000 МВт. Состоит из 4 энергоблоков, начало эксплуатации – 1976 год.
  • Калининская АЭС – мощность 4 000 МВт. Находится на севере Тверской области, располагает 4 энергоблоками. Открыта в 1984 году.
  • Смоленская АЭС – мощность 3 000 МВт. Признавалась лучшей АЭС России в 1991, 1992, 2006 2011 годах. Имеет 3 энергоблока, первый был запущен в эксплуатацию в 1982 году.
  • Ростовская АЭС – мощность 2 000 МВт. Крупнейшая электростанция юга России. На станции введены в эксплуатацию 2 энергоблока, первый в 2001 году, второй в 2010.
  • Нововоронежская АЭС – мощность 1880 МВт. Обеспечивает электроэнергией около 80% потребителей Воронежской области. Первый энергоблок был запущен в сентябре 1964 года. Сейчас действуют 3 энергоблока.
  • Кольская АЭС – мощность 1760 МВт. Первая в России АЭС построенная за полярным кругом, обеспечивает около 60% потребления электричества Мурманской области. Располагает 4 энергоблоками, была открыта в 1973 году.
  • Белоярская АЭС – мощность 600 МВт. Находится в Свердловской области. Была введена в эксплуатацию в апреле 1964 года. Является старейшей из ныне действующих АЭС в России. Сейчас действует только 1 энергоблок из трех предусмотренных проектом.
  • Билибинская АЭС – мощность 48 МВт. Является частью изолированной Чаун-Билибинской энергосистемы вырабатывая около 75% потребляемой ею электроэнергии. Была открыта в 1974 году, состоит из 4 энергоблоков.

Помимо существующих АЭС, в России ведется строительство еще 8 энергоблоков, а также плавучей атомной электростанции малой мощности.

Гидроэнергетика

Гидроэлектростанции обеспечивают довольно невысокую стоимость одного выработанного КВтч энергии. По сравнению с тепловыми электростанциями производство 1 КВтч на ГЭС обходится дешевле в 2 раза. Связано это с довольно простым принципом работы гидроэлектростанций. Строятся специальные гидротехнические сооружения которые обеспечивают необходимый напор воды. Вода, попадая на лопасти турбины, приводит ее в движение, которая в свою очередь приводит в действие генераторы вырабатывающие электроэнергию.

Но повсеместное использование ГЭС невозможно, так как необходимым условием эксплуатации является наличие мощного движущегося водного потока. Поэтому гидроэлектростанции сооружаются на полноводных крупных реках. Еще одним существенным недостатком ГЭС является перекрытие русла рек, что затрудняет нерест рыбы и затапливание больших объемов земельных ресурсов.

Но несмотря на негативные последствия для окружающей среды, гидроэлектростанции продолжают функционировать и строится на крупнейших реках мира. Всего в мире функционируют ГЭС общей мощностью около 780 тыс. МВт. Общее количество ГЭС подсчитать затруднительно, так как в мире действуют множество мелких ГЭС, работающих на нужны отдельного города, предприятия, а то и вовсе частного хозяйства. В среднем гидроэнергетика обеспечивает производство около 20% всей мировой электроэнергии.

Среди всех стран мира более всех от гидроэнергетики зависит Парагвай. В стране 100% электроэнергии вырабатывается на гидроэлектростанциях. Помимо этой страны от гидроэнергетики очень сильно зависят Норвегия, Бразилия, Колумбия.

Наибольшие гидроэлектростанции находятся в Южной Америке и Китае. Самая большая в мире гидроэлектростанция – Санься на реке Янзцы, ее мощность достигает 22 500 МВт, второе место занимает ГЭС на реке Парана – Итайпу, с мощностью 14 000 МВт. Самая крупная ГЭС России – Саяно-Шушенская, ее мощность около 6 400 МВт.

Помимо Саяно-Шушенской ГЭС в России действуют еще 101 гидроэлектростанция с мощностью более 100 МВт. Крупнейшие ГЭС России:

  • Саяно-Шушенская – Мощность - 6 400 МВт, среднегодовое производство электроэнергии – 19.7 млрд. КВтч. Дата ввода в эксплуатацию – 1985 год. ГЭС находится на Енисее.
  • Красноярская – Мощность 6 000 МВт, среднегодовое производство электроэнергии – около 20 млрд. КВтч, запущена в эксплуатацию в 1972 году, также расположена на Енисее.
  • Братская – Мощность 4 500 МВт, расположена на Ангаре. В год в среднем вырабатывает около 22.6 млрд. КВтч. Введена в эксплуатацию в 1961 году.
  • Усть-Илимская – Мощность 3 840 МВт, расположена на Ангаре. Среднегодовая производительность 21.7 млрд. КВтч. Была построена в 1985 году.
  • Богучанская ГЭС – Мощность около 3 000 МВт, была построена на Ангаре в 2012 году. Производит около 17.6 млрд. КВтч в год.
  • Волжская ГЭС – Мощность 2 640 МВт. Построена в 1961 году в Волгоградской области, среднегодовая производительность 10.43 КВтч.
  • Жигулевскя ГЭС – Мощность около 2 400 МВт. Была построена в 1955 году на реке Волга в Самарской области. В год производит около 11.7 КВтч электроэнергии.

Что касается объединенных энергетических систем, то наибольшую долю в выработке электроэнергии с помощью ГЭС имеют ОЭС Сибири и Востока. В этих ОЭС на долю гидроэлектростанций приходится 47.5 и 35.3% всей выработанной электроэнергии, соответственно. Это объясняется наличием в этих регионах крупных полноводных рек бассейна Енисея и Амура.

По итогам 2014 года ГЭС России было произведено более 167 млрд. КВтч электроэнергии. По сравнению с 2013 годом этот показатель уменьшился на 4.4%. Наибольший вклад в генерацию электроэнергии с помощью ГЭС внесла ОЭС Сибири – около 57% от общероссийского.

Теплоэнергетика

Теплоэнергетика является основой энергетического комплекса подавляющего большинства стран мира. Несмотря на то, что у тепловых электростанций масса недостатков, связанных с загрязнением окружающей среды и высокой себестоимостью электроэнергии, они используются повсеместно. Причина такой популярности – универсальность ТЭС. Тепловые электростанции могут работать на различных видах топлива и при проектировании обязательно учитывается какие энергоресурсы являются оптимальными для данного региона.

С помощью тепловых электростанций производится около 90% всей мировой электроэнергии. При этом на долю ТЭС использующих в качестве топлива нефтепродукты приходится производство 39% всей мировой энергии, ТЭС работающих на угле – 27%, а на долю газовых тепловых электростанций – 24% сгенерированного электричества. В некоторых странах существует сильная зависимость ТЭС от одного вида топлива. Например, подавляющее большинство польских ТЭС работают на угле, такая же ситуация и в ЮАР. А вот большинство тепловых электростанций в Нидерландах используют в качестве топлива природный газ.

В Российской Федерации основными видами топлива для ТЭС являются природный и попутный нефтяной газ и уголь. Причем на газу работает большинство ТЭС европейской части России, а угольные ТЭС преобладают в южной Сибири и Дальнем Востоке. Доля электростанций использующих в качестве основного топлива мазут незначительна. Кроме этого многие тепловые электростанции в России используют несколько видов топлива. Например, Новочеркасская ГРЭС в Ростовской области использует все три основных вида топлива. Доля мазута составляет 17%, газа – 9%, а угля – 74%.

По количеству произведенной электроэнергии в РФ в 2014 году тепловые электростанции прочно удерживают лидирующие позиции. Всего за прошедший год, ТЭС произвели 621.1 млрд. КВтч, это на 0.2% меньше чем в 2013 году. А в целом выработка электроэнергии тепловыми электростанциями РФ, снизилась до уровня 2010 года.

Если рассматривать выработку электроэнергии в разрезе ОЭС, то в каждой энергосистеме на долю ТЭС приходится наибольшее производство электричества. Больше всего доля ТЭС в ОЭС Урала – 86.8%, а наименьшая в ОЭС Северо-Запада – 45.4%. Что касается количественного производства электроэнергии, то в разрезе ОЭС это выглядит следующим образом:

  • ОЭС Урала – 225.35 млрд. КВтч;
  • ОЭС Центра – 131.13 млрд. КВтч;
  • ОЭС Сибири – 94.79 млрд. КВтч;
  • ОЭС Средней Волги – 51.39 млрд. КВтч;
  • ОЭС Юга – 49.04 млрд. КВтч;
  • ОЭС Северо-Запада – 46.55 млрд. КВтч;
  • ОЭС Дальнего Востока – 22.87 млрд. КВтч.

Тепловые электростанции в России разделяются на два вида ТЭЦ и ГРЭС. Теплоэлектроцентраль (ТЭЦ) представляет собой электростанцию с возможностью отбора тепловой энергии . Таким образом, ТЭЦ производит не только электроэнергию, но и тепловую энергию, использующуюся для горячего водоснабжения и отопления помещений. ГРЭС – тепловая электростанция производящая только электроэнергию. Аббревиатура ГРЭС осталась с советских времен и означала государственная районная электростанция.

На сегодняшний день в Российской Федерации функционирует около 370 тепловых электростанций. Из них 7 имеют мощность свыше 2 500 МВт:

  • Сургутская ГРЭС – 2 – мощность 5 600 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рефтинская ГРЭС – мощность 3 800 МВт, виды топлива – уголь – 100%.
  • Костромская ГРЭС – мощность 3 600 МВт, виды топлива – природный газ -87%, уголь – 13%.
  • Сургутская ГРЭС – 1 – мощность 3 270 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рязанская ГРЭС – мощность 3070 МВт, виды топлива – мазут – 4%, газ – 62%, уголь – 34%.
  • Киришская ГРЭС – мощность 2 600 МВт, виды топлива – мазут – 100%.
  • Конаковская ГРЭС – мощность 2 520 МВт, виды топлива – мазут – 19%, газ – 81%.

Перспективы развития отрасли

Последние несколько лет в российском энергетическом комплексе сохраняется положительный баланс между выработанной и потребленной электроэнергией. Как правило, общее количество потребленной энергии составляет 98-99% от выработанной. Таким образом можно сказать, что существующие производственные мощности полностью перекрывают потребности страны в электроэнергии.

Основные направления деятельности российских энергетиков направлены на повышение электрификации удаленных районов страны, а также на обновление и реконструкцию уже существующих мощностей.

Необходимо отметить, что стоимость электроэнергии в России существенно ниже, чем в странах Европы и Азиатско - Тихоокеанского региона, поэтому разработке и внедрению новых альтернативных источников получения энергии, не уделяется должного внимания. Доля в общем производстве электроэнергии ветроэнергетики, геотермальной энергетики и солнечной энергетики в России не превышает 0.15% от общего количества. Но если геотермальная энергетика очень сильно ограничена территориально, а солнечная энергетика в России не развивается в промышленных масштабах, то пренебрежение ветроэнергетикой является недопустимым.

На сегодняшний день в мире, мощность ветряных генераторов составляет 369 тыс. МВт, что всего на 11 тыс. МВт меньше, чем мощность энергоблоков всех АЭС мира. Экономический потенциал российской ветроэнергетики составляет около 250 млрд. КВтч в год, что равняется примерно четверти всей потребляемой электроэнергии в стране. На сегодняшний день производство электроэнергии с помощью ветрогенераторов не превышает 50 млн. КВтч в год.

Необходимо также отметить повсеместное внедрение энергосберегающих технологий, во все виды хозяйственной деятельности, которое наблюдается в последние годы. На производствах и в домашних хозяйствах используются различные приборы позволяющие сократить расход электроэнергии, а в современном строительстве активно используют теплоизоляционные материалы. Но, к сожалению, несмотря даже на принятый в 2009 году Федеральный Закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», по уровню экономии электроэнергии и энергосбережения, РФ очень сильно отстает от стран Европы и США.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш



Билет № 7

1. Сравнительная характеристика рельефа Центральной России и Западной Сибири, причины сходства и различия.

Сходства и различия рельефа двух разных территорий обуславлены особенностями развития тектонических процессов в его становлении, геологической истории зарождения, внешними процессами рельефообразования в четвертичное время.

Центральная Россия расположена в пределах Восточно-Европейской (Русской) равнины. Большая часть Западной Сибири представлена Западно-Сибирской равниной.

Основанием обеих равнин служат платформы. Кристаллический фундамент платформы Русской равнины образовался еще в докембрии, а Западно-Сибирской равнины – в палеозое. Фундамент Русской равнины залегает на разной глубине, что находит свое отражение в рельефе, например, Среднерусская возвышенность приурочена к приподнятому участку фундамента (антиклиза), а Окско-Донская равнина расположена на опущенном блоке фундамента (синеклиза). Фундамент Западно-Сибирской равнины перекрыт мощной толщей морских осадочных отложений мезозойского возраста, мощность которого увеличивается по направлению к центральным участкам равнины. В юго-западной части Центральной России кристаллический фундамент выходит на поверхность (Воронежский массив). Именно к этому месту приурочены богатейшие залежи железных руд (Курская магнитная аномалия). В пределах Западной Сибири, участки равнины лишенные осадочного чехла, отсутствуют.

Часть территории Центральной России и север Западной Сибири в четвертичное время были перекрыты покровным мощным ледником, сформировавшим особые формы рельефа такие как конечно-моренные гряды (Смоленско-Московская возвышенность и Сибирские Увалы), моренные холмы (Валдайская возвышенность), зандровые равнины (Мещерская низменность, Окско-Донская равнина), долины стока талых ледниковых вод и повсюду встречающиеся валуны. Ледниковые формы рельефа в Центральной России выражены сильнее, нежели в пределах Западной Сибири.

На Среднерусской возвышенности, там, где не было древнего оледенения, хорошо развит овражно-балочный рельеф. Рельеф Центральной России более приподнят и развивался более длительное время, эрозионные формы здесь выражены лучше, чем в Западной Сибири, для которой характерно повсеместное заболачивание. Одним из отличий является наличие в осадочном чехле Западно-Сибирской равнины значительных запасов горючих полезных ископаемых: нефти и газа.

2. Электроэнергетика: состав, типы электростанций, факторы и районы их размещения. Электроэнергетика и проблемы охраны окружающей среды.

Электроэнергетика – одна из базовых отраслей экономики России, обеспечивающая предприятия, и население электрической энергией. Каково значение электроэнергетики для нормального функционирования народного хозяйства, показали события 25 мая 2005 г. в Москве.

Электроэнергетика входит в состав топливно-энергетического комплекса России.

Существуют следующие типы электростанций: тепловые (ТЭС), гидроэлектростанции (ГЭС), гидроаккумалятивные (ГаЭС), атомные (АЭС), приливно-отливные (ПЭС), геотермальные (ГеоТЭС), ветровые (ВЭС), солнечные, работающие на солнечных батареях (СЭС), и электростанции, работающие на биогазе. Разрабатываются проекты станций, работающих на термоядерном синтезе – практически неограниченного источника энергии.

Большая часть электроэнергии производится на ТЭС (более 70%), работающих на газе и мазуте и в меньшей степени на угле. На долю ГЭС приходится около 10%, а доля АЭС составляет около 10%.

ТЭС размещают или в районах добычи топлива, или рядом с крупными нефтеперерабатывающими заводами, на которых получают мазут (Кириши, Ленинградская область), или в районах потребления большого количества электроэнергии (промышленные районы и города, на Урале и в Центральной России).

Самая крупная ТЭС в России – Рефтинская на Урале.

Особым типом тепловых станций является теплоэлектроцентраль (ТЭЦ), на которой помимо электрической энергии получают еще и тепло. ТЭЦ размещают рядом с крупными городами.

ГЭС строят на крупных полноводных реках с большим гидроэнергетическим потенциалом. Это Братская и Усть-Илимская ГЭС на Ангаре и Саяно-Шушенская и Красноярская ГЭС на Енисее. Больше всего ГЭС на Волге, где строили их строили каскадами, создавая водохранилища.

В АЭС используется радиоактивное топливо – уран (крупнейшее месторождение в Читинской области). В России АЭС сконцентрированы в основном в Центральной России, где нет крупных рек и значительных топливных ресурсов. АЭС есть на Урале и на Чукотке. Строительство АЭС в России сдерживается Чернобыльским синдромом.

На Кольском полуострове есть небольшая ПЭС (Кислая губа), а на Камчатке – ГеоТЭС.

В некоторых районах действуют маломощные ветровые электростанции.

Выработка 1 кВт/часа электроэнергии на ГЭС обходится дешевле по сравнению с ТЭС и АЭС, хотя само строительство ГЭС обходится дороже, чем строительство АЭС и ТЭС.

Наибольший вред природе наносят ТЭС, работающие на мазуте или угле. Потенциально опасными объектами являются АЭС, хотя уровень радиации рядом с АЭС ниже, чем около угольных ТЭС.

Большинство электростанций связаны между собой линиями электропередач в единую энергетическую систему, сформированную для рационального использования мощностей электростанций разных типов.

В целом по России электроэнергии вырабатывается больше, чем нужно для потребления. Но существуют и энергодефицитные регионы, такие как Дальний Восток (Приморский край), Москва и др. Часть электроэнергии экспортируется в Европу и в СНГ, часть электроэнергии Россия получает из соседнего Казахстана. Существуют проекты строительства ЛЭП в Финляндию и Китай, который может быть самым потенциально большим импортером российской электроэнергии.

3. Определение по статистическим материалам и сравнение плотности населения отдельных регионов России (по выбору учителя).

Плотность населения – одна из важнейших категорий географии. Средняя плотность населения определяется как частное от деления количества людей, проживающих на определенной территории, на площадь этой территории. Единица измерения – чел./км2. Средняя плотность населения России чуть меньше 9 чел./км2.

Плотность населения на Европейской части значительно выше, чем на Азиатской и резко меняется в зависимости от благоприятных природных, социально-экономических условий и историй развития региона. На арктических островах плотность населения равна нулю. В некоторых труднодоступных районах Крайнего Севера, Сибири и Дальнего Востока плотность населения составляет менее одной единицы. Самая высокая плотность населения в Московской агломерации (более 300 чел./км2) и в Краснодарском крае (более 100 чел./км2). Значительной плотностью населения отличаются Черноземье и Урало-Поволжский регион, особенно Татарстан и Башкирия (50-100 чел./км2).

Для подготовки ответа на данный нужно использовать карту «Размещение и плотность населения России».

По производству электроэнергии Россия занимает 4-е место в мире. Более 70% электроэнергии производится на тепловых станциях (ТЭС), работающих на газе, мазуте, угле и торфе, остальная энергия -- примерно поровну -- на гидравлических (ГЭС) и атомных (АЭС) станциях. Электроэнергетика является ведущей составной частью энергетики, обеспечивающей электрификацию страны на основе производства и распределения электроэнергии. Электроэнергия обладает целым рядом преимуществ перед всеми широко используемыми видами энергии. К ним относят возможность передачи на большие расстояния, распределения между потребителями и преобразования в другие виды энергии. Электроэнергию невозможно накапливать в больших количествах, поэтому разрабатываются различные способы накопления потенциальной энергии на различных стадиях производства энергии электрической. Технологическая структура электроэнергетики включает производство электроэнергии, ее транспортировку по линиям электропередач и распределение среди потребителей. Российская электроэнергетика -- это около 600 тепловых, 100 гидравлических и 11 атомных электростанций.

В настоящее время на Россию приходится примерно 10% производимой в мире электроэнергии, но в среднедушевом исчислении страна находится во 2-м десятке государств. Положительной стороной тепловой энергетики России является преобладание нефтегазового топлива, на котором работают электростанции Европейского региона и Западной Сибири. Только в Восточной Сибири и на Дальнем Востоке преобладают угольные ТЭС.

Преимуществом АЭС является их независимость от размещения топливных баз. Поэтому все крупные АЭС расположены в Европейском, дефицитном по топливу регионе страны. Небольшая АЭС работает на Чукотке. В настоящее время в России работают следующие АЭС: Кольская (Мурманская обл.), Ленинградская (Ленинградская обл.), Калининская (Тверская обл.), Смоленская (Смоленская обл.), Обнинская (Калужская обл., ее значение в выработке электроэнергии невелико), Нововоронежская (Воронежская обл.), Курская (Курская обл.), Волгодонская (Ростовская обл.), Балаковская (Саратовская обл.), Белоярская (Свердловская обл.), Билибинская (Чукотский АО). В настоящее время принята программа дальнейшего развития атомной энергетики как наиболее перспективной отрасли. Россия строит несколько АЭС за рубежом -- в Китае, Индии, Иране. Гидроресурсы служат важным источником энергии для районов Восточной Сибири, где на Ангаре и Енисее работают 5 мощных ГЭС, а также для Поволжья, где действуют 10 станций Волжско-Камского каскада. Среди более чем 1000 электростанций России выделяются по своей мощности Костромская, Рефтинская (около Екатеринбурга), Сургутская тепловые, Ленинградская и Нововоронежская атомные, Красноярская и Саянско-Шушенская гидростанции. Большинство крупных электростанций страны объединены в региональные энергосистемы, также соединенные между собой. Поэтому энергия может перераспределяться между районами страны (на расстоянии в сотни километров), позволяя снимать пиковые нагрузки и использовать ее свободные резервы.

Россия передает электроэнергию в страны СНГ. Восстанавливается единая энергосистема между Россией, Украиной, Казахстаном; формируется новая энергосистема, объединяющая Россию, страны Балтии, Польшу, Белоруссию, с дальнейшим выходом через нее в страны Западной Европы. Проектируются линии электропередач на востоке страны -- в Южную Корею, Индию, Китай, Японию на основе разработок сибирского угля и строительства системы крупных ТЭС.

Энергетика занимается производством и передачей электроэнергии и является одной из базовых отраслей тяжелой промышленности. Отличительная особенность экономики России -- это высокая по сравнению с экономически развитыми странами удельная энергоемкость производимого национального дохода.

Развитие электроэнергетики в России связано с планом ГОЭЛРО, который был разработан в 1920--1921 гг. Рассчитанный на 10--15 лет план предусматривал строительство 10 гидроэлектростанций и 20 тепловых электростанций. К 1935 г. было построено 40 районных электростанций вместо 30. План ГОЭЛРО создал основу индустриализации России. В 1920-е гг. Россия занимала одно из последних мест в мире по выработке электроэнергии, в конце 1940-х гг. страна заняла первое место в Европе и второе место в мире.

Крупные электростанции играют значительную районообразующую роль. На их базе возникают энергоемкие и теплоемкие производства.

Электроэнергетика включает тепловые электростанции, атомные электростанции, гидроэлектростанции (включая гидроаккумулирующие и приливные), прочие электростанции (ветростанции, гелиостанции, геотермальные), электрические сети, тепловые сети, самостоятельные котельные.

Тепловые электростанции (ТЭС). Основной тип электростанций в России -- тепловые, работающие на органическом топливе (уголь, газ, мазут, сланцы, торф). Основную роль играют мощные (более 2 млн кВт) государственные районные электростанции (ГРЭС), обеспечивающие потребности экономического района и работающие в энергосистемах. На размещение тепловых электростанций оказывают основное влияние топливный и потребительский факторы. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива (чем крупнее электростанция, тем дальше она может передавать энергию).

ГРЭС мощностью более 2 млн кВт расположены в следующих экономических районах: Центральном (Костромская, Рязанская, Конаковская); Уральском (Рефтинская, Троицкая, Ириклинская); Поволжском (Заинская); Восточно-Сибирском (Назаровская); Западно-Сибирском (Сургутские); Северо-Кавказском (Ставропольская); Северо-Западном (Киришская) (табл. 7.5).

Гидравлические электростанции (ГЭС). Они занимают второе место по количеству вырабатываемой электроэнергии. Гидроэлектростанции являются эффективным источником энергии, поскольку они используют возобновимые ресурсы, они просты в управлении (количество персонала на ГЭС в 15--20 раз меньше, чем на ГРЭС), имеют высокий КПД (более 80%), производят самую дешевую энергию.

Строительство ГЭС требует длительных сроков и больших удельных капитальных вложений, связано с потерями земель на равнинах, наносит ущерб сельскому и рыбному хозяйству.

К ГЭС мощностью более 2 млн кВт относятся Саяно-Шушенская, Красноярская, Братская, Усть-Илимская в Восточно-Сибирском экономическом районе; Волжская (Волгоград), Волжская (Самара) в Поволжском экономическом районе.

Для гидростроительства в настоящее время характерно сооружение на реках каскадов гидроэлектростанций.

Каскад представляет собой группу ГЭС, расположенных ступенями по течению водного потока для последовательного использования его энергии. При этом помимо получения электроэнергии решаются проблемы снабжения населения и производства водой, устранения паводков, улучшения транспортных условий. Но создание каскадов привело к нарушению экологического равновесия.

Самые крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская на Енисее, Иркутская, Братская, Усть-Илимская, Богучанская на Ангаре.

В европейской части страны создан крупный каскад ГЭС на Волге. В его состав входят Иваньковская, Рыбинская, Городецкая, Чебоксарская, Волжская (Самара), Саратовская, Волжская (Волгоград) и другие ГЭС.

В отечественной электроэнергетике используются альтернативные источники энергии: солнца, ветра, внутреннего тепла земли, морских приливов. Построены природные электростанции (ПЭС). На приливных волнах на Кольском полуострове сооружена Кислогубская ПЭС (400 кВт), которой более 30 лет; проектируется Мезенская ПЭС. Самые мощные ПЭС (20 тыс. кВт) построены в Канаде и Китае. На термальных водах Камчатки построена Паужетская ГеоТЭС. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера, гелиоустановки на Северном Кавказе. Однако следует отметить и тот факт, что большинство возобновляемых источников энергии в условиях экономической нестабильности в России неконкурентоспособно в сравнении с традиционными электростанциями из-за высокой удельной стоимости электроэнергии.